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region results from an excited state intervalence transfer.1 

In view of our present observation of two distinct bands in 
the visible spectra of all the biferrocene dications (see Table 
II), it seems more reasonable to propose that these bands 
result from separate ligand to metal transitions from the cy-
clopentadienyl ligands (at lower energy) and the fulvalene 
ligand. In the monocations, the bands coalesce. This would 
explain the lower intensity of the 560-nm transition in the 
2,2"-dimethyl monocation and the 480-nm transition in the 
dication. Further experiments to evaluate these assignments 
are in progress. 
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Photochemistry of 
#-ferf-Butyl-l,l-diphenylethylene. Evidence for 
an Unusual Olefin to Carbene Transformation 

Sir: 

The study of the photochemical migration reactions of 
/3-substituted styrenes and 1,1-diarylethylenes has proved to 
be a fascinating and fruitful area for research.1 In such sys­
tems, the most commonly observed photochemical process 
is a 1,2 migration of a 7 substituent to form a cyclopropane 
(e.g., 1 —• 2), l a , d though other migration processes have 

CH1 

PhCH=CHC(CH3)3 

1 
(D 

been noted.2 We report here the new and unusual reaction 
course taken by photoexcited f3-tert-butyl-1,1 -diphenylethy-
lene (3). Our observations are consistent with the occur­
rence of a novel olefin to carbene transformation. 

Ph2C=CH(XCH3)S 
3 

Ph2CH 

'•3 + 

C(CH3)3 

(2) 

Irradiation3 of 3 in cyclohexane solution produced, ineffi­
ciently, a major and a minor photoproduct in 36 and 6% 
yields, respectively, at 53% conversion of 1 (eq 2).4 The 
NMR spectrum of the major product, isolated via tedious 
silica gel chromatography, strongly suggested that this ma­
terial was the benzhydryldimethylcyclopropane 4. That this 
structural assignment was indeed correct was unambig­
uously demonstrated by comparison of the NMR spectrum 
and gas chromatographic retention times of the 4 isolated 
from the photolysis of 3 with those of 4 independently syn­
thesized as shown in eq 3. 

Ph2CHCHO + Ph3P=(XCH3)2 — • Ph2CHCH=C 
\ 

'CH3 

CH3 

CHC1» NaOH 

PhCH2N(CH3)JCl = 

Na6 

MeOH (H2O) Ph2O 

The minor photoproduct was identified as 9-fm-butyl-
phenanthrene (5) by comparison of its N M R spectrum and 
GC retention times with those of an authentic sample.7 

Benzophenone-sensitized irradiation of 3 gave no 4 or 5 (or 
7). 

To probe the molecular details of the rearrangement of 3, 
3-d containing deuterium (>95% d) at the vinyl position 
was prepared using standard procedures and irradiated. In­
spection of the N M R spectrum of the resulting 4-d proved 
very revealing. The signals for the methyl groups (S 1.10 
and 0.99) and the cyclopropane methylene protons (multi-
plets centered at 8 0.51 and 0.32) in 4-d were clearly pres­
ent and identical with those in the nondeuterated 4. How­
ever, the prominent doublet for the benzhydryl proton at 5 
3.39 in 4 had completely disappeared. The deuterium at C-
2 in starting olefin 3 has therefore become attached to the 
benzhydryl carbon in product 4. An insufficient amount of 
5-d was produced for accurate NMR analysis in this experi­
ment. 

Though one may conceive of other pathways leading 
from 3 to 4 and 5,8 we feel the most likely scheme is that 
shown in eq 4. The reactive excited singlet state of 3 under­
goes a 1,2 shift of its vinyl hydrogen to form carbene 6. The 
latter in turn is trapped by insertion into one of the y C-H 
bonds of the neighboring methyl groups to form 4, a reac­
tion typical of /3-methylcarbenes.9a In addition, the expect­
ed phenyl migration occurs9b to form a-terr-butylstilbene 7 
(not isolated) which undergoes the expected photochemical 
cyclization to phenanthrene 5.10 Reversion of 6 to starting 
material via /3 C-H insertion most likely also occurs, but 
this would go undetected. Our isolation of the products 
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H(D) 

CH3 

P h 2 C - C - C — C H 3 —>- 4 (4) 

H(D) CH3 ^ 

CH3 6 3 
1/CH 3 

5 ^ - P h C H = C ^ XCH3 -«—' 
(D) \ p h 

7 

which would be expected from carbene 6, together with the 
deuterium-labeling results, provides strong support for the 
above reaction scheme. 

This 3 — 6 transformation, the reverse of which is com­
mon in carbene chemistry,93 is highly unusual. However, we 
note that Cristol has very recently found evidence suggest­
ing the migration of a vinyl carbon to form a carbene in the 
photochemistry of 3-phenylcycloheptene." Likewise, 
Kropp12 has provided strong evidence that tetrasubstituted 
alkenes on direct irradiation form carbenes by a similar 
vinyl-carbon shift; here, Rydberg excited states are felt to 
be involved. Both of these processes bear a resemblance to 
the one we feel is operative in the transformation of 3, 
though there are significant differences among all three 
cases.13 An interesting aspect of our present case is that 
there is no evidence for the occurrence of such a carbene 
formation process in /3-terr-butylstyrene (1), a molecule 
very similar to 3 which undergoes instead a 1,2-methyl shift 
to form a cyclopropane (eq l ) . l a , d This may indicate that 
the carbene formation from 3 occurs via a twisted excited 
state (7r,ir*), whereas reaction of 1 does not; certainly the 
congestion about C-I and the double bond in 3 is more se­
vere than that in the styrene analog 1, and one would expect 
twisting to be more favored in the former.14 Indeed, the 
reaction looks less unusual if one considers as an intermedi­
ate a twisted excited state in which the former olefin ir elec­
trons occupy nearly perpendicular orbitals. Such an excited 
state bears some analogy to the n-Tr* state of ketones and, 
viewed in this light, the photochemical ring expansion of the 
n-7r* states of cyclic ketones, notably cyclobutanones, to 
oxacarbenes15 would then be a reaction very similar to the 
olefin reaction we report here. 

Finally, as mentioned previously, the reaction of 3 ap­
pears qualitatively to be very inefficient. This inefficiency is 
no doubt part of the reason why such carbene formation has 
not been more generally observed with other olefins, for it 
would be expected to compete unfavorably with other, more 
facile processes. 
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Structure of Everninomicin D1 

Sir: 

Everninomicins, produced by Micromonospora carbona-
ceae,2 are oligosaccharide antibiotics, related to curamy-
cin3a and avilamycin,3b and display high activity against 
gram positive bacteria and Neisseria including strains resis­
tant to penicillin, tetracycline, lincomycin, rifampicin, 
macrolides, and chloramphenicol.4 We report here the 
structure of the major component, everninomicin D. 

Everninomicin D (1) is an amorphous solid 
C6 6H9 9O3 5NCl2 : [a]D = -34 .2° ; ir i w 1538 (nitro), 1730 
c m - 1 (carbonyl), the nitro absorption was stronger than the 
carbonyl absorption. It formed a monomethyl ether (2) with 
diazomethane, C 6 7 H I O I O 3 5 N C I 2 : [a]U = -29 .7° . The mo­
lecular weight of 2 was determined to be 1579 (calcd for 
C67HiOiO35NCl2 is 1551) by the application of the radioac­
tive method described by us earlier.5 

Everninomicin D on mild acidic hydrolysis yielded ever­
ninomicin Di (3), C66HiOiO36NCl2: [a]D = -41 .2° ; ir i/max 

1538 (nitro), 1730 c m - 1 (carbonyl). As in everheptose 
(4 ) , " compound 3 showed stronger carbonyl absorption 
than nitro absorption in the ir. On treatment with diazo­
methane it underwent smooth cleavage to 5 and olgose (6). 

Olgose (6) (C3 7H6 2O2 2 ; mp 212-215°; [a]D = -21 .8°) 
does not show any carbonyl absorption in the ir. The N M R 
spectrum of 6 (220 MHz; CDCl3) shows three methyl dou­
blets at 8 1.24, 1.31, and 1.33 (7 = 7 Hz), a methyl singlet 
at & 1.28, and five methoxyl groups. On solvolysis6 com­
pound 6 yielded evertetrose7 (7) and an ester, 8. 

Compound 8 distills at 60° (0.4 mm): Ci 0 Hi 8 O 7 ( M + 

250); [a]D = - 2 8 ° ; ir, cmax 1739 (ester) and 3509 c m - 1 

(hydroxyl); NMR, 8 1.25 (d, J = 6.5 Hz, CH3CH(OMe)), 
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